
February, 2002

Advisor Answers

Retrieving a file's creation date

VFP 7/6/5/3

Q: How can I get the creation date and time of a file in FoxPro?

–Dr. Deniz Yüksel (via Advisor.COM)

A: FoxPro provides several native ways to get the most recently
modified date of a file (check out ADIR(), FDATE() and FTIME()), but

you have to go outside the product to get the creation date.

There are also a couple of ways to get the creation date of a file. One

of them is much easier than the other, so I'll look at that approach,
which uses the Windows Scripting Host's FileSystemObject, first.

The Windows Scripting Host (WSH) is an Automation wrapper for a
tremendous number of system operations. It provides an easy way to

do a lot of things that used to require API calls. You'll find a good
overview of the Windows Scripting Host in Gene Sally's articles in the

May '99 and August '99 issues of FoxPro Advisor.

The object we're interested in is the FileSystemObject. You can create
an instance like this:

oFSO = CreateObject("Scripting.FileSystemObject")

This object lets you work with drives, folders, and files. The object has

a GetFile method that gives you an object reference to a particular file.
For example, to get a reference to Browser.APP, use code like this:

oFT = oFSO.GetFile(HOME() + "Browser.APP")

Once you have a reference to a file, you can find pretty much anything

you'd want to know about it. The DateCreated property contains the
information you're looking for:

tCreated = oFT.DateCreated

The file object also has DateLastAccessed and DateLastModified
properties, among others.

With such an easy solution, why even look at another approach?

Because not every machine has the WSH installed. Some people don't
have it because they're using older versions of Windows and Internet

Explorer that didn't include it. Others don't have it because some
companies have decided that the risks of this tool outweigh its

benefits. The WSH can be used for all kinds of anti-social behavior
(think viruses).

So, a look at the more complex solution is in order. This version uses
API functions, including a couple that require structures. While the

structures involved are quite simple and we could create them by
hand, the code is easier to write and easier to read if we use the Struct

class created and placed in the public domain by my co-columnist,
Christof. The Struct class lets you work with VFP objects rather than

structures and handles all the details of converting the objects into the
form you need to pass to API functions, and converting the returned

data back into the VFP objects.

The first step in getting the file creation date is to get a handle to the
file. That's because the API function that returns file dates doesn't

accept the file name as a parameter; it requires a handle.

The OpenFile function opens a file for all kinds of uses and returns a

handle to the file. (VFP's low-level file functions use handles in the
same way.) As with all API functions, you have to declare OpenFile

before using it.

DECLARE INTEGER OpenFile IN WIN32API ;
 STRING lpFileName, STRING lpReOpenBuff, LONG wStyle

The first parameter to OpenFile is the filename, including the path. The

second parameter returns information you'd use to reopen the file with
a later call to OpenFile, and can be safely ignored for our purposes –

just pass a long, empty string. The last parameter indicates the

purpose for opening the file – pass 0 to indicate the file is open for
reading.

This call opens Browser.APP. (Keep in mind that API functions are
case-sensitive.)

nHandle = OpenFile(HOME() + "Browser.APP", SPACE(128), 0)

The next step is to retrieve the dates for the file. The GetFileTime API

function gives you access to the creation, last accessed and last
modified dates. Each of those is placed into a FileTime structure.

This is where Christof's Struct class starts to come in handy. To use it,

you need to point to the necessary class libraries, then create the
appropriate object. We'll need a FileTime object for each of the dates

the function returns:

SET CLASSLIB TO Struct, WinStruct
oCreated = CreateObject("FileTime")
oAccessed = CreateObject("FileTime")
oModified = CreateObject("FileTime")

In most cases, we can substitute a character string for a structure.

Here's the declaration for the GetFileTime function:

DECLARE LONG GetFileTime IN WIN32API ;
 LONG hFile, STRING @ lpCreationTime, ;
 STRING @ lpLastAccessTime, STRING @ lpLastWriteTime

To pass our structures to the function, we need to convert them to

strings. The GetString method of the structure class does this:

cCreated = oCreated.GetString()
cAccessed = oAccessed.GetString()
cModified = oModified.GetString()

At this point, we can call the function, passing the strings by

reference:

nError = GetFileTime(nHandle, @cCreated, ;
 @cAccessed, @cModified)

The function returns 0 if an error occurs and a non-zero value if it's

successful. Once the function returns, we need to store the updated
dates back into the structure objects. The structure class's SetString

method does the trick.

oCreated.SetString(cCreated)
oAccessed.SetString(cAccessed)
oModified.SetString(cModified)

Because Windows uses UTC (universal coordinated time) internally, we

need to convert from that time to the local time. The
FileTimeToLocalTime function handles this chore. It uses another

FileTime structure. Here's the declaration for that function:

DECLARE INTEGER FileTimeToLocalFileTime in Win32API ;
 STRING lpFileTime, STRING @ lpLocalFileTime

This code sets up and performs the function call:

oLocalTime = CREATEOBJECT("FileTime")
cLocalTime = oLocalTime.GetString()

FileTimeToLocalFileTime(oCreated.GetString(), ;
 @cLocalTime)

The final step is to convert the date information into a readable

format. The API function for that is FileTimeToSystemTime. The
function takes two parameters, the FileTime structure you want to

convert and a SystemTime structure to contain the result. Here's the
declaration, again substituting strings for structures:

DECLARE LONG FileTimeToSystemTime IN WIN32API ;
 STRING lpFileTime, STRING @ lpSystemTime

As before, we need to create the structure, using the right class, and
convert it to a string:

oCreatedTime = CreateObject("SystemTime")
cCreatedTime = oCreatedTime.GetString()

To call the function, pass the string version of the created time and the

new system time string

FileTimeToSystemTime(cLocalTime, @cCreatedTime)

As with GetFileTime and FileTimeToLocalTime, a non-zero return value
indicates success. In that case, the oCreatedTime object has

properties that represent the different components of the date. You
can assemble them using DATETIME(), like this:

WITH oCreatedTime
 tResult = DATETIME(.wYear, .wMonth, .wDay, ;
 .wHour, .wMinute, .wSecond)
ENDWITH

This month's Professional Resource CD contains FileCreated.PRG, a

function that accepts a filename and returns its creation date, using
this approach, as well as Struct.ZIP, the source code and

documentation for Christof's structure classes.

–Tamar

